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Abstract

Having access to a wide variety of labeled data is not al-
ways granted and often boosts the generalisation ability of a
supervised learning model. To overcome this issue of label-
unavailability in the context of a segmentation task for gen-
erating land use maps of unlabeled geographical regions,
this paper presents a CycleGAN related style-transfer ap-
proach to generate synthetic image-label pairs for an un-
labeled target domain by leveraging data from a labeled
source domain. The synthetic image-label pairs are then
used as training data for a segmentation network that is
tested on the unlabeled target domain. Our approach was
able to boost the visual accuracy of a segmentation al-
gorithm that was applied on an unseen geographical re-
gion. Additional time was spent in developing a processing
pipeline for high-resolution remote sensing imagery.

1. Introduction

Land use maps are an integral part of infrastructure plan-
ning. The process of creating such maps is usually tied
to human labour and can involve hand labeling copious
amounts of buildings and streets from remote sensing im-
agery. Due to the lack of immediate financial potential, la-
beling work is rarely done for cities in developing countries.
An alternative approach for generating such land use maps
is by using algorithmic, learning-based methods. The ideal
outcome of this approach is an algorithm that takes satellite
images as input and returns the respective land use maps as
an output. A first step towards such a solution could be a
supervised segmentation algorithm that learns to recognize
buildings and streets from the given images and encodes
the results as segmentation masks. To teach such a seg-
mentation algorithm the correct mapping function, it first
needs to be trained by providing it with existing pairings
of satellite images and their corresponding segmentation
masks with pixel-wise label information, i.e. whether the
pixel belongs to a building, a street or the background. Fur-

thermore, an ideally trained version of this algorithm would
be able to generalize-well across various geographical do-
mains, meaning that it would be able to generate accurate
segmentation masks of previously unseen regions.
The so-called generalization ability (generalizability) of a
supervised segmentation algorithm is closely tied to the
variance in the image-data it was trained on. In the con-
text of remote sensing imagery, variance entails images of
different geographical regions (domains), which have dis-
tinct characteristics. Conclusively, a segmentation algo-
rithm will perform well on unseen regions if it is able to
generalize well, and it is more likely to generalize well, if it
was trained on image-data, containing examples of various
domains. While free geographical databases, like for ex-
ample OpenStreetMap [5], provide map references that can
be processed into building-and-street segmentation maps,
they lack accurate map information for cities in develop-
ing countries, as mentioned above. The lack of labeled data
for certain cities is thus still an issue, even for supervised,
algorithmic approaches, such as image segmentation.
In this paper, we present a cycleGAN [7] based method
for generating synthetic labeled data in form of image-label
pairs in the context of satellite imagery and corresponding
building-and-street-segmentation masks. Furthermore, we
show that enriching the training data set of a segmentation
algorithm, results in visually more accurate segmentation
mask on unseen regions.
We start in section 2 by examining general land use map
generation methods, specific methods that can be used for
synthetic label generation, as well as the general cycle-
GAN model. Afterwards, in section 3, we illustrate the pre-
processing steps for the satellite image input data. Then,
we introduce our cycleGAN, style-transfer based method
to generate synthetic image-label pairs for the above men-
tioned use-case. Section 4, presents the results of our ap-
proach as well as the experimental set-up and the evalua-
tion method. Finally, we conclude with section 5, where we
give a final summary according to the results and mention
potential future work.
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2. Related works
In the following paragraphs, we first examine a land
use map generation approach that is not concerned with
generating synthetic image-label pairs. Then, we present
the models, which combined together, constitute our final
model. Namely, Unet [6], the model for the segmentation
algorithm, the general CycleGAN model, and a more
specialized CycleGAN variation, called cyCADA [3].

Topological map extraction. [4] We started out querying
general approaches for land use map generation, such as
the so-called PolyMapper approach for topological map
extraction. This approach does not focus on predicting
pixel-wise segmentation. Instead, it tries to achieve decent
generalizability by predicting buildings and streets directly
as polygons. Receiving the satellite image as input, the
model first uses a convolutional neural network to extract
key points from the image, which are then connected and
processed into vector representations for each object. The
entire pipeline of this approach is rather involved and
eventually achieves the polygon mapping by unifying
object detection, instance segmentation and vectorization.
After further inspection of this approach, we decided
to go into a completely different direction and a more
lightweight context, by focusing on a more general solution
to the underlying problem. Namely, find a way to boost a
basic segmentation algorithm’s generalizability, instead of
pursuing more complex segmentation approaches.

Unet. [6] Unet is a plain, rather lightweight but effective
segmentation model. The core of this convolutional net-
work is an encoder-decoder architecture. The contracting
path of the model, i.e. the encoder, follows a typical
convolutional architecture by applying a series of convo-
lution and max-pooling layers to the input image. While
the image dimensions are down-sampled, the number of
feature channels increases. This way, the model tries to
capture the context of the image, like for example spatial
information.
The expanding path of the model, i.e. the decoder, is
symmetric to the contracting path. It uses up-sampling
layers or transposed convolution layers to expand the
spatial dimensions of the down-sampled input and reduce
the number of feature channels. Working with a more
low-level representation of the initial image, the decoder
part focuses more on the low-level features. Furthermore,
at each up-sampling step, the output of the lower level is
concatenated with the corresponding feature map from the
contracting path, consequently combining spatial informa-
tion of the image with the low-level feature information.
Having up-sampled to the final layer, the model uses its
final convolution layer to output a segmentation map with
the same spatial resolution as the initial input image.

Figure 1. The cycle of a CycleGAN with generators F and G.

There are various versions of the Unet model architecture,
very lightweight ones, as well as ones that are more refined.
We have used a custom lightweight architecture for the
initial experiments and ended up using a more complex
version for the final outputs.

CycleGAN. [7] The CycleGAN is used to apply a style-
transfer to a labeled source domain image x ∈ X , such that
the transferred image keeps the structure of the input image
but is stylized in a way that it matches the target domain Y .
The transferred image can then be used together with the
segmentation mask of the input image to serve as a synthetic
image-label-pair belonging to the unlabeled target domain.
The CycleGAN architecture consists of two generators, G
and F , and two discriminators, Dx and Dy . The genera-
tors transform source domain images to target domain im-
ages (G) and vice versa (F ) while the discriminators try
to distinguish generated images from real ones in a min-
max-game. Additionally, a so-called cycle-consistency is
enforced, such that x = F (G(x)) and y = G(F (y)). The
full objective is explained in [7] and summarized as fol-
lows:

L(G,F,Dx, Dy) =

LGAN (G,Dy, F,Dx)

+ λLcycle(G,F )

(1)

where LGAN is the adversarial loss introduced in [1] and
Lcycle ensures the cycle-consistency mentioned above.

CyCADA. [3] CyCADA is a CycleGAN-based model de-
veloped by Hoffman et al. It augments the CycleGAN with
the addition of unsupervised adversarial adaptation meth-
ods. The goal of the model is to predict the label for some
target data. Ie. it is able to adapt in the absence of target
labels, and is applicable in pixel-level and feature space. A
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Figure 2. CyCADA extends the CycleGAN architecture for do-
main translation. The GAN and Cycle loss, indicated in red and
green, are the same as in CycleGAN. CyCADA adds a semantic
consistency loss, visible in gray, based on a pre-trained segmenta-
tion model as well as training losses, visible in purple and orange,
for the target segmentation model. We extended the semantic con-
sistency loss with segmentation information of the re-constructed
source image, shown in light blue.

shortcoming of such techniques in the past was, that there
was no guarantee that the source image stylised as the tar-
get preserves the structure or content of the original sam-
ple. To encourage the source content to be preserved, Cy-
CADA imposes a cycle-consistency constraint. They intro-
duce another mapping back to reproduce the original sam-
ple, thereby enforcing cycle-consistency. For our use case
this additional constraint serves to be able to differentiate
generally hindering features like added trees on roads or the
recoloring of roofs.

3. Method
To present our method, we first elaborate on the data col-
lection a pre-processing step, since it consumed a big part
of our time and is an essential first step for our final ex-
periments. Subsequently, we present our final method for
generating synthetic image-label pairs for an unlabeled ge-
ographical domain.

3.1. Data Collection and Processing

To test the results of our work, we used satellite im-
ages of African cities that were provided without any cor-
responding segmentation masks. To prevent the manual
labeling of this data for training purposes, we decided to
start with US satellite imagery instead, since it is avail-
able in high resolution, includes infrared channels the same
way as the given data from less developed cities, and most
importantly comes pre-labled through free geographical
databases. The decision to use well-labeled, American city
images for training purposes helped in testing the gener-
alization ability of our model, since they aren’t designed
and constructed in the same manner as the African cities we
used for our final evaluation.
We generated a random list, containing a variety of east
coast cities and loaded the ground truth from Open Street
Maps [5] (OSM) while getting the satellite images from

Earth Engine [2]. For each city we gathered the satellite
images in the bounding area of the ground truth data and
split it into 3 km chunks, since it is easier to work with
multiple smaller files than one large one. We visualised the
OSM data and separated it into a building and a street data
set. OSM data does not always contain street width, but
always their position, so we manually selected an appropri-
ate general width for the obtained satellite imagery. When
visualizing the data we had to make sure to work in the
same coordinate reference system (CRS) in all the cases.
To improve the performance of the final model, we added
variance and permutations to the data. We resized, flipped
and normalized the data before we used it in our pipeline.
The data frequently includes dead data from outside of the
city limits. To remove these chunks with numerous empty
spaces we had to add additional scripts to the pre-processing
pipeline. Lastly, in edge cases, one of the data sets was in-
complete so we removed every chunk without intersections
in both sets.

3.2. Training the Generators

Our approach for generating synthetic image-label pairs in
the context of land use maps is rather straightforward. We
first decide on a geographical region, which has enough and
accurate hand-labeled map data available. This is usually
the case for wealthy and well-populated regions, like for ex-
ample the east-coast in the USA, and such map data is freely
available in geographical databases like OpenStreetMap [5].
After we process the image and label pairs from the geo-
graphical database according to the process discussed in the
section above, we have a consistent image-label pairs avail-
able, for a well-labeled domain, which we call domain X .
Now we are able to freely choose another geographical re-
gion for our domain Y , independent of available map data
for said region, even if there is no map data available at all.
We process the satellite imagery of domain Y in such a way
that it is consistent in format with the processed color im-
ages of domain X . The colored images from both domains
are then arbitrarily paired together to form a data set that is
used as input to a CycleGAN model. What the CycleGAN
model learns, is to apply style transfer to image x from the
labeled domain X , such that it visually looks like it belongs
to the unlabeled domain Y . Additionally, it does learns the
same thing in the other direction. Namely, it learns a map-
ping of image y ∈ Y in such a way, that it looks like it
belongs to domain X . The result of this procedure are two
trained generators, G and F , which are able to apply style-
transfer from and to the respective domains, as can be seen
in figure 3. For this step any CycleGAN variation can be
used, such as the CyCADA model mentioned in section 2.
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Figure 3. CycleGAN mapping. Domain X is east coast of USA
and domain Y is Jakarta. On the left from top to bottom: y,
G(F(y)), G(x). On the right from top to bottom: F(y), F(G(x)),
x

3.3. Boosting Segmentation Generalizability

The boosting of the segmentation generalizability, i.e. the
segmentation performance on an unseen geographical re-
gion, of any preferred segmentation algorithm can now
be achieved in two different ways. Namely, by gener-
ating synthetic image-label pairs or an approach we call
pseudo segmentation.

3.3.1 Generating synthetic image-label pairs

As the name suggests, we try to boost the generalization
ability of a segmentation algorithm by generating synthetic
image-label pairs. For this, we take generator G, which
maps x to the style of domain Y , and apply style-transfer
to a set of images from X , resulting in a image set G(X).
Since the style-transfer keeps the structural information of
the input image during the mapping, the segmentation mask
of the input image x can now be paired together with the
resulting image G(x), which looks like it belongs to the
unlabeled domain Y . Now we have synthetic image-label
pairs (G(x), seg(x)), which represent the unlabeled target
domain Y , and where seg(x) is the segmentation mask of
input image x. These synthetic image-label pairs can now
be used to augment the train-data set of any segmentation
algorithm, adding more variance to the training procedure.
Our assumption is, that having examples in the training set,
that resemble more closely to the unseen region, our seg-
mentation algorithm will perform better on said unseen re-
gion compared to not having been trained with such a train
set augmentation.

3.3.2 Pseudo Segmentation

Another way to make use of the CycleGAN training result,
and try to boost the generalizability of a segmentation algo-
rithm, is to take generator F , which maps y to the style of
domain X , and involve it directly in the segmentation pro-

Figure 4. Style transfer and cycling back to source style with Cy-
CADA for building recognition.

Figure 5. Predictions of the UNet trained on fake Jakarta im-
ages top and predictions on the re-constructed Jakarta images by
CyCADA trained to translate from and to fake Jakarta from real
Jakarta images bottom

.

cess. For this, we create a segmentation pipeline, where we
take as input an image y from an unlabeled domain Y , and
first transfer the style of y to the style of a labeled domain
X , resulting in the image F (y). Subsequently, F (y) is used
as an input to a segmentation algorithm Sx, that was trained
on the labeled domain X . This way, we hope to boost the
generalizability of Sx in an implicit manner, providing it
with a synthetic image that looks like one from its expert
domain.
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3.3.3 Replacing CycleGAN with CyCADA

As mentioned in section 2, CyCADA is an augmentation of
CycleGAN for domain translation. Instead of solely relying
on the CycleGAN architecture, it uses additional loss in-
formation of a pre-trained segmentation model to preserve
semantic consistency before and after translation to the tar-
get domain, shown in gray in figure 2. We additionally add
the re-constructed image to this semantic consistency loss
to preserve segmentation after re-construction, indicated in
light blue in figure 2. To prevent [?] we inject minimal
Gaussian noise after before each generator step to mitigate
the usage stored information in the translated image by the
model. The original model did not produce certain colours
from the target images, for example the yellow roofs that
are typical in Jakarta. Therefor, we added a jitter element
to the generator step GT→S of the stylized source images
to assist it with handling more colour variations. For the
same reason, we also trained the UNet with jittered east
coast images. The result of this change can be seen in
figure 4. After we trained and predicted the fake Jakarta
images, we now re-train the UNet on these translated im-
ages. We additionally re-train the CyCADA model using
the newly trained UNet on to translate from and to Jakarta
from the fake Jakarta images. Figure 5 shows in the top row
the on fake Jakarta re-trained UNet’s predictions and below
the predictions by the re-trained CyCADA model. This re-
training greatly increases the building recognition visible as
the red overlay. The re-trained UNet model over-predicts
buildings quite visibly, as shown in figure 7. Re-training
the CyCADA model using this UNet removes these artifacts
in the reconstructed images, as seen in figure 8. However,
certain dense areas also lose predictions, as seen in figure
5 in the second image. The reason for this loss in predic-
tion is not clear, even so predictions that are removed by
re-construction are predominantly coarse over-predictions
with no individual buildings predicted.

4. Results
In the following paragraphs we present the results
of our method. It is important to note that the
Pseudo Segmentation approach ended up producing unus-
able results. Therefore, we only show the results of syn-
thetic image-label pair generation, which was able to boost
the performance of a segmentation algorithm, by visual
evaluation, on an unseen region.

4.1. Experimental Setup

Labeled images from the east coast of the USA will serve
as our labeled domain X . This data was downloaded from
OpenStreetMap and then processed according to our pre-
processing step. As our unlabeled domain Y , we picked
the city Jakarta, which is sufficiently distinct from our X

Figure 6. The synthetic label approach via CycleGAN only
showed visual improvements for the street segmentation.

domain. The remote sensory images from Jakarta were pro-
vided by GIZ and were also processed according to our pre-
processing step. Furthermore, we used a Unet segmenation
algorithm as our segmentation network.

4.2. Evaluation Method

In order to evaluate how well each approach is perform-
ing in terms of providing synthetic labeled data for an un-
labeled target domain, a consistent procedure must be used.
Therefore, we trained two instances of the same segmenta-
tion network on two different data sets. One instance of our
segmentation network was trained on a data set containing
only image-label pairs from domain X . The other instance
was trained on synthetic image-label pairs form our syn-
thetic label method mentioned in section 3. As our final
evaluation, we applied both segmentation instances on the
unseen, unlabeled domain Y , i.e. Jakarta. We evaluated
the performance according to visual accuracy of the seg-
mentation since we do not have ground truth labels of the
unlabeled domain to be used for metric calculations.

4.3. Performance

As can be seen in figure 9, the Unet that was trained on the
synthetic images managed to produce visually more accu-
rate road segmentation. The segmentation for buildings did
not show any improvements. The building detection was
improved with CyCADA and false positives were limited
that were a problem with the original prediction as one can
see in figure 7. In the end result with CyCADA there an
increase of false negatives was noticeable in figure 8 yet the
edges proof usable for further utilisation in future work.
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Figure 7. Original pre-
diction. Visible over-
prediction.

Figure 8. Improvement
with CyCADA

Figure 9. Street segmentation on the unlabeled region Jakarta.
Once with a Unet that was trained on the East-Coast region (X),
and once with a Unet that was trained on synthetic labels for
Jakarta (Y).

5. Conclusions
The main conclusion of our work is that we were able to
boost the generalization ability of a segmentation model
for road segmentation by construction synthetic image-label
pairs of an unlabeled domain. Due to time constraints, as
well as a rather time-consuming data-collection step. In the
last paragraphs below, we discuss the limitations and future
work of both the main approach as well as the data process-
ing.

5.1. Limitations and Future Work

Our approach to boost the generalizability of a segmen-
tation model in the context of land use maps and satellite
imagery is rather simple and straight forward. The results
of the buildings segmentation were a bit disappointing and
not usable at all. We believe that this is due to general
poor performance of the segmentation model itself, when
it comes to identifying buildings from satellite imagery.
Nevertheless, the results from road segmentation on the
unseen, unlabeled region were satisfying and show that

there is some potential in pursuing this approach further.
All in all, the fact that our approach is not specific on a
certain domain, it can be used and combine across various
other domains or with more specialized segmentation
algorithms, like for example the PolyMapper approach
mentioned in section 2. Furthermore, other CycleGAN
variations could be used for training the generators. The
loss of the CycleGAN model could be manipulated in a
way, such that the semantic consistency of the labeled
domain image x is considered during training.

5.2. Data gathering

While we were able to boost the generalization ability of
a segmentation algorithm when it comes to road segmenta-
tion, the big disparity in source and target domain can still
lead to more flawed predictions, than a if there were less
disparities. If one specific topography is of special interest,
one could use a neighbouring country or city with known
ground truth as source domain which would lead to better
performance for that specific area.
Lastly, our visualization technique used for the ground truth
is satisfactory but not flawless. An automated approach
for finding street widths would increase reliability and is
needed to pursuit this approach further.
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